Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Immunol ; 13: 1094086, 2022.
Article in English | MEDLINE | ID: covidwho-2198922

ABSTRACT

[This corrects the article DOI: 10.3389/fimmu.2020.556335.].

2.
Immunobiology ; 227(6): 152287, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2105123

ABSTRACT

BACKGROUND: Epitope selection is the key to peptide vaccines development. Bioinformatics tools can efficiently improve the screening of antigenic epitopes and help to choose the right ones. OBJECTIVE: To predict, synthesize and testify peptide epitopes at spike protein, assess the effect of mutations on epitope humoral immunity, thus provide clues for the design and development of epitope peptide vaccines against SARS-CoV-2. METHODS: Bioinformatics servers and immunological tools were used to identify the helper T lymphocyte, cytotoxic T lymphocyte, and linear B lymphocyte epitopes on the S protein of SARS-CoV-2. Physicochemical properties of candidate epitopes were analyzed using IEDB, VaxiJen, and AllerTOP online software. Three candidate epitopes were synthesized and their antigenic responses were evaluated by binding antibody detection. RESULTS: A total of 20 antigenic, non-toxic and non-allergenic candidate epitopes were identified from 1502 epitopes, including 6 helper T-cell epitopes, 13 cytotoxic T-cell epitopes, and 1 linear B cell epitope. After immunization with antigen containing candidate epitopes S206-221, S403-425, and S1157-1170 in rabbits, the binding titers of serum antibody to the corresponding peptide, S protein, receptor-binding domain protein were (415044, 2582, 209.3), (852819, 45238, 457767) and (357897, 10528, 13.79), respectively. The binding titers to Omicron S protein were 642, 12,878 and 7750, respectively, showing that N211L, DEL212 and K417N mutations cause the reduction of the antibody binding activity. CONCLUSIONS: Bioinformatic methods are effective in peptide epitopes design. Certain mutations of the Omicron would lead to the loss of antibody affinity to Omicron S protein.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Humans , Rabbits , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Computational Biology/methods , Epitopes, T-Lymphocyte/genetics , COVID-19 Vaccines/genetics , Immunity, Humoral , Epitopes, B-Lymphocyte/genetics , Vaccines, Subunit , Peptides
3.
Front Immunol ; 11: 556335, 2020.
Article in English | MEDLINE | ID: covidwho-993352

ABSTRACT

Introduction: Right now, we are facing a global pandemic caused by the coronavirus SARS-CoV-2 that causes the highly contagious human disease COVID-19. The number of COVID-19 cases is increasing at an alarming rate, more and more people suffer from it, and the death toll is on the rise since December 2019, when COVID-19 has presumably appeared. We need an urgent solution for the prevention, treatment, and recovery of the involved patients. Methods: Modulated electro-hyperthermia (mEHT) is known as an immuno-supportive therapy in oncology. Our proposal is to apply this method to prevent the progression of the disease after its identification, to provide treatment when necessary, and deliver rehabilitation to diminish the fibrotic-often fatal-consequences of the infection. Hypothesis: The effects of mEHT, which are proven for oncological applications, could be utilized for the inactivation of the virus or for treating the fibrotic consequences. The hypothesized mEHT effects, which could have a role in the antiviral treatment, it could be applied for viral-specific immune-activation and for anti-fibrotic treatments.


Subject(s)
COVID-19/rehabilitation , Electric Stimulation Therapy , Hyperthermia, Induced , Immunotherapy , Pulmonary Fibrosis/rehabilitation , SARS-CoV-2 , COVID-19/complications , COVID-19/epidemiology , Humans , Pulmonary Fibrosis/epidemiology , Pulmonary Fibrosis/etiology
SELECTION OF CITATIONS
SEARCH DETAIL